Published September 2020 | Version v1
Conference paper

Generating Adversarial Examples for Topic-dependent Argument Classification

Others:
Web-Instrumented Man-Machine Interactions, Communities and Semantics (WIMMICS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
This work is partly funded by the French government labelled PIA program under its IDEX UCA JEDIproject (ANR-15-IDEX-0001) and supported through the 3IA Côte d'Azur Investments in the Future project managed by the National Research Agency (ANR) with the reference number ANR-19-P3IA-0002
ANR-15-IDEX-0001,UCA JEDI,Idex UCA JEDI(2015)
ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)

Description

In the last years, several empirical approaches have been proposed to tackle argument mining tasks, e.g., argument classification, relation prediction, argument synthesis. These approaches rely more and more on language models (e.g., BERT) to boost their performance. However, these language models require a lot of training data, and size is often a drawback of the available argument mining data sets. The goal of this paper is to assess the robustness of these language models for the argument classification task. More precisely, the aim of the current work is twofold: first, we generate adversarial examples addressing linguistic perturbations in the original sentences, and second, we improve the robustness of argument classification models using adversarial training. Two empirical evaluations are addressed relying on standard datasets for AM tasks, whilst the generated adversarial examples are qualitatively evaluated through a user study. Results prove the robust-ness of BERT for the argument classification task, yet highlighting that it is not invulnerable to simple linguistic perturbations in the input data.

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
November 29, 2023