Published August 25, 2014
| Version v1
Conference paper
Feedback stabilization of predator-prey systems for impulsive biological control
Creators
Contributors
Others:
- Biological control of artificial ecosystems (BIOCORE) ; Laboratoire d'océanographie de Villefranche (LOV) ; Observatoire océanologique de Villefranche-sur-mer (OOVM) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire océanologique de Villefranche-sur-mer (OOVM) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de la Recherche Agronomique (INRA)
- International Federation of Automatic Control (IFAC). AUT.
Description
In agricultural applications, the introduction of predators is used to control the prey/pests level so that crop damage is limited; however, though a satisfactory equilibrium between predators and prey may exist, it may be unstable. In order to achieve pest control, its stabilization should then be achieved and, since predator releases occur at discrete time instants, we model them through impulses upon which we will build a positive impulsive feedback control law. Our controller is based on the measurement of the state every $T$ time instants followed by the introduction, when necessary, of predators into the system to instantaneously bring their population up to a prescribed level. The proposed controller is shown to lead to the global asymptotic stability of the desired equilibrium for $T$ small; local stability is shown for some larger periods, and some numerical asymptotic analysis is performed.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://inria.hal.science/hal-00968181
- URN
- urn:oai:HAL:hal-00968181v1
Origin repository
- Origin repository
- UNICA