A discontinuous Galerkin method for a two dimensional reduced resistive MHD model
- Others:
- Center for Applicable Mathematics [Bangalore] (TIFR-CAM) ; Tata Institute for Fundamental Research (TIFR)
- Control, Analysis and Simulations for TOkamak Research (CASTOR) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)
- PC would like to thank the Airbus Chair on Mathematics of Complex Systems at TIFR-CAM, Bangalore, and the MATRICS grant (MTR/2018/000006) from SERB-DST, India, for supporting this work.
Description
We are concerned with the numerical approximation of an incompressible ionized gas (plasma) flowing in a toroidal geometry. We also assume that the flow is independent of the toroidal coordinate and the resulting model is thus 2-D. We consider a symmetric formulation, the so-called Reduced Resistive MHD model, where the governing equation gives the evolution of the axial current and vorticity (scalar variables). These equations are written in a quasi conservative form and, using the Discontinuous Galerkin (DG) framework, an approximation strategy is proposed and analyzed for triangular meshes. This approach combines a Galerkin projection of the velocity stream function and magnetic flux to obtain divergence-free approximations, together with a DG approximation of the evolutionary equations for current and vorticity, while the integration is performed using Crank–Nicholson scheme. The designed methodology is validated on the kink-mode and the tilting MHD instabilities.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-02267004
- URN
- urn:oai:HAL:hal-02267004v1
- Origin repository
- UNICA