Published August 6, 2018
| Version v1
Publication
The probability of default in internal ratings based (IRB) models in Basel II: an application of the rough sets methodology
Description
El nuevo Acuerdo de Capital de junio de 2004 (Basilea II) da cabida e incentiva la
implantación de modelos propios para la medición de los riesgos financieros en las
entidades de crédito. En el trabajo que presentamos nos centramos en los modelos internos
para la valoración del riesgo de crédito (IRB) y concretamente en la aproximación a uno de
sus componentes: la probabilidad de impago (PD).
Los métodos tradicionales usados para la modelización del riesgo de crédito, como son el
análisis discriminante y los modelos logit y probit, parten de una serie de restricciones
estadísticas. La metodología rough sets se presenta como una alternativa a los métodos
estadísticos clásicos, salvando las limitaciones de estos.
En nuestro trabajo aplicamos la metodología rought sets a una base de datos, compuesta
por 106 empresas, solicitantes de créditos, con el objeto de obtener aquellos ratios que
mejor discriminan entre empresas sanas y fallidas, así como una serie de reglas de decisión
que ayudarán a detectar las operaciones potencialmente fallidas, como primer paso en la
modelización de la probabilidad de impago. Por último, enfrentamos los resultados obtenidos
con los alcanzados con el análisis discriminante clásico, para concluir que la metodología de
los rough sets presenta mejores resultados de clasificación, en nuestro caso.
Abstract
The new Capital Accord of June 2004 (Basel II) opens the way for and encourages credit entities to implement their own models for measuring financial risks. In the paper presented, we focus on the use of internal rating based (IRB) models for the assessment of credit risk and specifically on the approach to one of their components: probability of default (PD). In our study we apply the rough sets methodology to a database composed of 106 companies, applicants for credit, with the object of obtaining those ratios that discriminate best between healthy and bankrupt companies, together with a series of decision rules that will help to detect the operations potentially in default, as a first step in modelling the probability of default. Lastly, we compare the results obtained against those obtained using classic discriminant análisis. We conclude that the rough sets methodology presents better risk classification results.Abstract
Junta de Andalucía P06-SEJ-01537Additional details
Identifiers
- URL
- https://idus.us.es/handle//11441/77835
- URN
- urn:oai:idus.us.es:11441/77835
Origin repository
- Origin repository
- USE