Published March 6, 2020 | Version v1
Publication

A neural network for semantic labelling of structured information

Description

Intelligent systems rely on rich sources of information to make informed decisions. Using information from external sources requires establishing correspondences between the information and known information classes. This can be achieved with semantic labelling, which assigns known labels to structured information by classifying it according to computed features. The existing proposals have explored different sets of features, without focusing on what classification techniques are used. In this paper we present three contributions: first, insights on architectural issues that arise when using neural networks for semantic labelling; second, a novel implementation of semantic labelling that uses a state-of-the-art neural network classifier which achieves significantly better results than other four traditional classifiers; third, a comparison of the results obtained by the former network when using different subsets of features, comparing textual features to structural ones, and domain-dependent features to domain-independent ones. The experiments were carried away with datasets from three real world sources. Our results show that there is a need to develop more semantic labelling proposals with sophisticated classification techniques and large features catalogues.

Abstract

Ministerio de Economía y Competitividad TIN2016-75394-R

Additional details

Created:
March 27, 2023
Modified:
December 1, 2023