Published January 31, 2024
| Version v1
Publication
Anomaly detection in graph signals with canonical correlation analysis
Contributors
Others:
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; Université Côte d'Azur (UniCA)-Université Côte d'Azur (UniCA)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)
- Northwestern Polytechnical University [Xi'an] (NPU)
- ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
- ANR-19-CE48-0002,DARLING,Adaptation et apprentissage distribués pour les signaux sur graphe(2019)
Description
Data from network-structured applications, like sensor networks or smart grids, often reside on complex supports. Specific graph signal processing tools are needed for effective utilization. Detecting anomalous events in graph signals holds relevance across various applications, ranging from monitoring energy and water supplies to environmental surveillance. In these problems, anomalies often activate localized groups of vertices in the graph. This paper introduces the Joint Graph-Regularized Wavelet CCA (JGWCCA) approach, which combines canonical correlation analysis (CCA) with dual-tree complex wavelet packet transform (DT-CWPT) and graph regularization. JGWCCA enables time-frequency analysis of graph signals while considering the underlying graph topology. Performance validation of JGWCCA is done through numerical simulations.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-04632396
- URN
- urn:oai:HAL:hal-04632396v1
Origin repository
- Origin repository
- UNICA