Published April 4, 2022 | Version v1
Journal article

Understanding photosynthetic biofilm productivity and structure through 2D simulation

Others:
Laboratoire de Mathématiques de Besançon (UMR 6623) (LMB) ; Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC) ; Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)
Laboratoire de Génie des Procédés et Matériaux (LGPM) ; CentraleSupélec-Université Paris-Saclay
Institut Denis Poisson (IDP) ; Université d'Orléans (UO)-Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS)
Biological control of artificial ecosystems (BIOCORE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'océanographie de Villefranche (LOV) ; Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE)
This work benefited from the support of the ANR PhotoBiofilm Explorer (ANR- 20-CE43-0008) This work benefited from the financial support of the LabeX LaSIPS project Greenbelt managed by the French National Research Agency (ANR) under the "Investissements d′avenir" program, to O. B. & F. L. This work also benefited from the support of the Treilles Foundation, to O. B. & F. L. The authors are grateful to the OPAL infrastructure from Université Côte d'Azur for providing resources and support, to O.B. & B. P. The funders had no role in study design data collection and analysis decision to publish or preparation of the manuscript.

Description

We present a spatial model describing the growth of a photosynthetic microalgae biofilm. In this 2D-model we consider photosynthesis, cell carbon accumulation, extracellular matrix excretion, and mortality. The rate of each of these mechanisms is given by kinetic laws regulated by light, nitrate, oxygen and inorganic carbon. The model is based on mixture theory and the behaviour of each component is defined on one hand by mass conservation, which takes into account biological features of the system, and on the other hand by conservation of momentum, which expresses the physical properties of the components. The model simulates the biofilm structural dynamics following an initial colonization phase. It shows that a 75 μ m thick active region drives the biofilm development. We then determine the optimal harvesting period and biofilm height which maximize productivity. Finally, different harvesting patterns are tested and their effect on biofilm structure are discussed. The optimal strategy differs whether the objective is to recover the total biofilm or just the algal biomass.

Abstract

International audience

Additional details

Created:
December 3, 2022
Modified:
December 1, 2023