HIGH-ORDER SIMULATION OF THE FLOW INSTABILITY OVER A NON-CIRCULAR ă STRUCTURE
- Creators
- Minguez, Matthieu
- Meliga, Philippe
- Serre, Eric
- Others:
- Modélisation et Simulation Numérique (en mécanique des fluides) (M2P2) ; Université de la Méditerranée - Aix-Marseille 2-Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2) ; Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
Description
Bluff bodies can be prone to well-known self-excited instability such as ă galloping. Opposite to classical and well documented Vortex Induced ă Vibrations (VIV), oscillation amplitude is not bounded in such a way ă galloping-like instability can alter the integrity of the structure on ă short term. Although stability criteria exist in the literature [1], ă there is a real lack considering the cause and the way to inhibit such ă instability. ă It is consequently proposed in this paper to investigate the flow over ă the classical `non-circular' structure, i.e the square box body, by ă means of advanced Spectral Large Eddy Simulation (LES) solver, [16], ă [17] & [18]. The main objectives of this numerical analysis will be ă to provide an accurate solution to underline the possible mechanisms ă that trigger the instability as well as a base solution for future wake ă stability & control analysis, [6].
Abstract
32nd ASME International Conference on Ocean, Offshore and Arctic ă Engineering, Nantes, FRANCE, JUN 09-14, 2013
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01464723
- URN
- urn:oai:HAL:hal-01464723v1
- Origin repository
- UNICA