Enhancing domain-specific ontologies at ease
- Others:
- Universidad Nacional de Córdoba [Argentina]
- Web-Instrumented Man-Machine Interactions, Communities and Semantics (WIMMICS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
We present a methodology to enhance domain-specific ontologies by (i) manual annotation of texts with the concepts in the domain ontology, (ii) matching annotated concepts with the closest YAGO-Wikipedia concept and (iii) using concepts from other ontologies that cover complementary domains. This method reduces the difficulty of aligning ontologies, because the alignment is carried out within the scope of an example. The resulting alignment is a partial connection between diverse ontologies, and also a strong connection to Linked Open Data. By aligning these ontologies, we are increasing the ontological coverage for texts in that domain. Moreover, by aligning domain ontologies to the Wikipedia (via YAGO) we can obtain manually annotated examples of some of the concepts, effectively populating the ontology with examples. We present two applications of this process in the legal domain. First, we annotate sentences of the European Court of Human Rights with the LKIF ontology, at the same time matching them with the YAGO ontology. Second, we annotate a corpus of customer questions and answers from an insurance web page with the OMG ontology for the insurance domain, matching it with the YAGO ontology and complementing it with a financial ontology.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01626620
- URN
- urn:oai:HAL:hal-01626620v1
- Origin repository
- UNICA