Learning spectral-spatial prior via 3DDNCNN for hyperspectral image deconvolution
- Creators
- Wang, Xiuheng
- Chen, Jie
- Brie, David
- Richard, Cédric
- Others:
- Northwestern Polytechnical University [Xi'an] (NPU)
- Centre de Recherche en Automatique de Nancy (CRAN) ; Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
Description
Hyperspectral image (HSI) deconvolution is an ill-posed problem aiming at recovering sharp images with tens or hundreds of spectral channels from blurred and noisy observations. In order to successfully conduct the deconvolution, proper priors are required to regularize the optimization problem. However, handcrafting a good regularizer may not be trivial and complex regularizers lead to difficulties in solving the optimization problem. In this paper, we use the alternating direction method of multipliers (ADMM) to decompose the optimization problem into iterative subproblems where the prior only appears in a denoising subproblem. Then a 3D denoising convolutional neural network (3DDnCNN) is designed and trained with data for solving this problem. In this way, the hyperspectral image deconvolution is then solved with a framework that integrates the optimization techniques and deep learning. Experimental results demonstrate the superiority of the proposed method with several blurring settings in both quantitative and qualitative comparisons.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-03352831
- URN
- urn:oai:HAL:hal-03352831v1
- Origin repository
- UNICA