Heuristic approach for forecast scheduling
- Others:
- Orange Labs [Issy les Moulineaux] ; France Télécom
- Orange Labs [Paris] ; Telecom Orange
- Network Engineering and Operations (NEO ) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Laboratoire Informatique d'Avignon (LIA) ; Avignon Université (AU)-Centre d'Enseignement et de Recherche en Informatique - CERI
Description
Forecast Scheduling (FS) is a scheduling concept that utilizes rate prediction along the users' trajectories in order to optimize the scheduler allocation. The rate prediction is based on Signal to Interference plus Noise Ratio (SINR) or rate maps provided by a Radio Environment Map (REM). The FS has been formulated as a convex optimization problem namely the maximization of an α−fair utility function of the cumulated rates of the users along their trajectories [1]. This paper proposes a fast heuristic for the FS problem based on two FS users' scheduling. Furthermore, it is shown that in the case of two users, the FS problem can be solved analytically, making the heuristic computationally very efficient. Numerical results illustrate the throughput gain brought about by the scheduling solution.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01705829
- URN
- urn:oai:HAL:hal-01705829v1
- Origin repository
- UNICA