On the inverse Potts functional for single-image super-resolution problems
- Others:
- Dipartimento di Matematica [Bologna] ; Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO)
- Morphologie et Images (MORPHEME) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut de Biologie Valrose (IBV) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Department of Computer Science and Engineering [Bologna] (DISI) ; Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO)
Description
We consider a variational model for single-image super-resolution based on the assumption that the image gradient of the target image is sparse. To promote jump sparsity, we use an isotropic and anisotropic $\ell^{0}$ inverse Potts gradient regularisation term combined with a quadratic data fidelity, similarly as studied in [1] for general problems in signal recovery. For the numerical realisation of the model, we consider a converging ADMM algorithm. Differently from [1], [2], where approximate graph cuts and dynamic programming techniques were used for solving the non-convex substeps in the case of multivariate data, the proposed splitting allows to compute explicitly their solution by means of hard-thresholding and standard conjugate-gradient solvers. We compare quantitatively our results with several convex, nonconvex and deep-learning-based approaches for several synthetic and real-world data. Our numerical results show that combining super-resolution with gradient sparsity is particularly helpful for object detection and labelling tasks (such as QR scanning and land-cover classification), for which our results are shown to improve the classification precision of standard clustering algorithms and state-of-the art deep architectures [3].
Abstract
10 pages + appendices, 7 figures
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-02978020
- URN
- urn:oai:HAL:hal-02978020v1
- Origin repository
- UNICA