Published October 17, 2019 | Version v1
Journal article

High order HDG method and domain decomposition solvers for frequency‐domain electromagnetics

Others:
High-End Parallel Algorithms for Challenging Numerical Simulations (HiePACS) ; Laboratoire Bordelais de Recherche en Informatique (LaBRI) ; Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Numerical modeling and high performance computing for evolution problems in complex domains and heterogeneous media (NACHOS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)

Description

This work is concerned with the numerical treatment of the system of three-dimensional frequency-domain (or time-harmonic) Maxwell equations using a high order hybridizable dis-continuous Galerkin (HDG) approximation method combined to domain decomposition (DD) based hybrid iterative-direct parallel solution strategies. The proposed HDG method preserves the advantages of classical DG methods previously introduced for the time-domain Maxwell equations, in particular in terms of accuracy and flexibility with regards to the discretization of complex geometrical features, while keeping the computational efficiency at the level of the reference edge element based finite element formulation widely adopted for the considered PDE system. We study in details the computational performances of the resulting DD solvers in particular in terms of scalability metrics by considering both a model test problem and more realistic large-scale simulations performed on high performance computing systems consisting of networked multicore nodes.

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
November 29, 2023