Compositional changes of phase-separated nanoparticles in silicates
- Others:
- Institut de Physique de Nice (INPHYNI) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Cameca ; Cameca
- Laboratoire de Photonique d'Angers (LPHIA) ; Université d'Angers (UA)
- UFR des Sciences de la Terre et de la Mer ; Université de Bordeaux (UB)
- Pôle Microscopie Electronique ; Université Bordeaux Segalen - Bordeaux 2
- Institut de Physique du Globe de Paris (IPGP) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)
- National Resource for Imaging Mass Spectroscopy (NRIMS) ; Harvard University [Cambridge]-National Institutes of Health [Bethesda] (NIH)-Massachusetts Institute of Technology (MIT)
Description
(< 1500 characters): The study of amorphous phase-separated Dielectric Nano-Particles (DNPs) smaller than 10 nm is a great challenge for the materials community. In conjunction with Transmission Electron Microscopy (TEM) and Electron-Probe Micro-Analysis (EPMA), we took advantage of a recent technology, Tri-Dimensional (3D) Atom Probe Tomography (APT) to investigate the variations of the chemical composition in sub-20-nm oxide nanoparticles, grown in silicate glass through heat treatments, at their early stages of nucleation. More precisely, we are investigating the core of an optical fiber drawn from a preform prepared according to the Modified Chemical Vapor Deposition (MCVD) process. We provide here a comprehensive set of experimental data obtained from direct measurements of the concentration for P, Mg, Ge and Er within amorphous dielectric nanoparticles (DNP) of radii ranging from 1 nm to 10 nm. We report on an increase of the concentration of Mg and P with the size of the DNPs. Most importantly, we also demonstrate that erbium ions are partitioned in these small DNPs and their environment changes with the size of the nanoparticles. Molecular dynamics simulations were also implemented to discuss the structural modifications of the Er environment. This presentation highlights the trade off on the size of the DNPs: smaller to reduce light scattering vs bigger to modify luminescence properties.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-02366876
- URN
- urn:oai:HAL:hal-02366876v1
- Origin repository
- UNICA