Published 2011
| Version v1
Conference paper
Non-Negative Pre-Image in Machine Learning for Pattern Recognition
Contributors
Others:
- Laboratoire Modélisation et Sûreté des Systèmes (LM2S) ; Institut Charles Delaunay (ICD) ; Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)
- Université Libanaise
- Laboratoire Hippolyte Fizeau (FIZEAU) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Lebanese University [Beirut] (LU)
- This work is partly supported under the French-Lebanese collaboration program CEDRE No. 10 SCI F15/L5
Description
Moreover, in order to have a physical interpretation, some constraints should be incorporated in the signal or image processing technique, such as the non-negativity of the solution. This paper deals with the non-negative pre-image problem in kernel machines, for nonlinear pattern recognition. While kernel machines operate in a feature space, associated to the used kernel function, a pre-image technique is often required to map back features into the input space. We derive a gradient-based algorithm to solve the pre-image problem, and to guarantee the non-negativity of the solution. Its convergence speed is significantly improved due to a weighted stepsize approach. The relevance of the proposed method is demonstrated with experiments on real datasets, where only a couple of iterations are necessary.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-01966029
- URN
- urn:oai:HAL:hal-01966029v1
Origin repository
- Origin repository
- UNICA