Controlled and thermalized indirect exciton fluids in a GaN/AlGaN quantum well with electrostatic traps
- Others:
- Laboratoire Charles Coulomb (L2C) ; Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
- Axe Physique de l'Exciton, du Photon et du Spin (L2C) (PEPS) ; Laboratoire Charles Coulomb (L2C) ; Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
- Centre de recherche sur l'hétéroepitaxie et ses applications (CRHEA) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)
- ANR-15-CE30-0020,OBELIX,Vers un liquide quantique d'excitons indirects(2015)
- ANR-20-CE30-0032,IXTASE,Excitons Indirects pour les états collectifs emergents(2020)
- ANR-11-LABX-0014,GANEX,Réseau national sur GaN(2011)
Description
The Mott transition from a dipolar excitonic liquid to an electron-hole plasma is demonstrated in a wide GaN/(Al,Ga)N quantum well at $T=7$K by means of spatially-resolved magneto-photoluminescence spectroscopy. Increasing optical excitation density we drive the system from the excitonic state, characterized by a diamagnetic behavior and thus a quadratic energy dependence on the magnetic field, to the unbound electron-hole state, characterized by a linear shift of the emission energy with the magnetic field. The complexity of the system requires to take into account both the density-dependence of the exciton binding energy and the exciton-exciton interaction and correlation energy that are of the same order of magnitude. We estimate the carrier density at Mott transition as $n_\mathrm{Mott}\approx 2\times 10^{11}$cm$^{-2}$ and address the role played by excitonic correlations in this process. Our results strongly rely on the spatial resolution of the photoluminescence and the assessment of the carrier transport. We show, that in contrast to GaAs/(Al,Ga)As systems, where transport of dipolar magnetoexcitons is strongly quenched by the magnetic field due to exciton mass enhancement, in GaN/(Al,Ga)N the band parameters are such that the transport is preserved up to $9$T.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-04874180
- URN
- urn:oai:HAL:hal-04874180v1
- Origin repository
- UNICA