Published 2013
| Version v1
Journal article
A profile decomposition approach to the $L^\infty_t(L^3_x)$ Navier-Stokes regularity criterion
Contributors
Others:
- Institut de Mathématiques de Jussieu (IMJ) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Jean Alexandre Dieudonné (LJAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
In this paper we continue to develop an alternative viewpoint on recent studies of Navier-Stokes regularity in critical spaces, a program which was started in the recent work by C. Kenig and the second author (Ann Inst H Poincaré Anal Non Linéaire 28(2):159-187, 2011). Specifically, we prove that strong solutions which remain bounded in the space $L^3(R^3)$ do not become singular in finite time, a known result established by Escauriaza, Seregin and Sverak (Uspekhi Mat Nauk 58(2(350)):3-44, 2003) in the context of suitable weak solutions. Here, we use the method of "critical elements" which was recently developed by Kenig and Merle to treat critical dispersive equations. Our main tool is a "profile decomposition" for the Navier-Stokes equations in critical Besov spaces which we develop here. As a byproduct of this tool, assuming a singularity-producing initial datum for Navier-Stokes exists in a critical Lebesgue or Besov space, we show there is one with minimal norm, generalizing a result of Rusin and Sverak (J Funct Anal 260(3):879-891, 2011).
Abstract
35 pagesAbstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-00936368
- URN
- urn:oai:HAL:hal-00936368v1
Origin repository
- Origin repository
- UNICA