Published 2015 | Version v1
Book section

Probabilistic Gene Network

Others:
Equipe de Probabilité et Statistique ; Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe BIOINFO ; Modèles Discrets pour les Systèmes Complexes (Laboratoire I3S - MDSC) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
P. Amar
F. Képès
V. Norris

Description

In this article we present a modelling framework that links the well known modelling framework of gene network introduced by R. Thomas and Markov chains. In a first development we introduce a Markov chain having as state space the set of all possible states of the R. Thomas models: we generate the transition probabilities by examining all the possible parameterizations of the interaction graph. The second development focuses on a stochastic framework where several parameterizations of a same qualitative gene interaction graph are considered and transition probabilities allow one to jump from a state to another one which can potentially be in another parameterized model. The idea is to consider only parameterized qualitative models of R. Thomas which abstract biological knowledge, and to use transition probabilities to allow to jump from one to another, if information coming from biological experiments reinforces the belief in a particular model.

Abstract

International audience

Additional details

Created:
March 26, 2023
Modified:
December 1, 2023