Published February 15, 2018 | Version v1
Journal article

A high-order discontinuous Galerkin method for 1D wave propagation in a nonlinear heterogeneous medium

Others:
Centre d'Etudes et d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement - Equipe-projet MOUVGS (Cerema Equipe-projet MOUVGS) ; Centre d'Etudes et d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement (Cerema)
Séismes et Vibrations (IFSTTAR/GERS/SV) ; Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Communauté Université Paris-Est
Numerical modeling and high performance computing for evolution problems in complex domains and heterogeneous media (NACHOS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Géoazur (GEOAZUR 7329) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])

Description

We propose a nodal high-order discontinuous Galerkin method for 1D wave propagation in nonlinear media. We solve the elastodynamic equations written in the velocity-strain formulation and apply an upwind flux adapted to heterogeneous media with nonlinear constitutive behavior coupling stress and strain. Accuracy, convergence and stability of the method are studied through several numerical applications. Hysteresis loops distinguishing loading and unloading-reloading paths are also taken into account. We investigate several effects of nonlinearity in wave propagation, such as the generation of high frequencies and the frequency shift of resonant peaks to lower frequencies. Finally, we compare the results for both nonlinear models, with and without hysteresis, and highlight the effects of the former on the stabilization of the numerical scheme.

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
November 30, 2023