Published October 1, 2011 | Version v1
Journal article

THE CANADA-FRANCE ECLIPTIC PLANE SURVEY—FULL DATA RELEASE: THE ORBITAL STRUCTURE OF THE KUIPER BELT

Others:
Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM) ; Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC) ; Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)
Laboratoire de Cosmologie, Astrophysique Stellaire & Solaire, de Planétologie et de Mécanique des Fluides (CASSIOPEE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
Fisheries and Oceans Canada (COOGER)
Department of Space Studies [Boulder] ; Southwest Research Institute [Boulder] (SwRI)
Department of Physics and Astronomy [Vancouver] ; University of British Columbia (UBC)
Harvard-Smithsonian Center for Astrophysics (CfA) ; Harvard University [Cambridge]-Smithsonian Institution
SwRI Planetary Science Directorate [Boulder] ; Southwest Research Institute [Boulder] (SwRI)
Mullard Space Science Laboratory (MSSL) ; University College of London [London] (UCL)
DLO Winand Staring Centre ; DLO Winand Staring Centre
Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Señal [Alicante] (DFESTS) ; Universidad de Alicante
Universidad de Alicante

Description

We report the orbital distribution of the trans-Neptunian objects (TNOs) discovered during the Canada-France Ecliptic Plane Survey (CFEPS), whose discovery phase ran from early 2003 until early 2007. The follow-up observations started just after the first discoveries and extended until late 2009. We obtained characterized observations of 321 deg(2) of sky to depths in the range g similar to 23.5-24.4 AB mag. We provide a database of 169 TNOs with high-precision dynamical classification and known discovery efficiency. Using this database, we find that the classical belt is a complex region with sub-structures that go beyond the usual splitting of inner (interior to 3:2 mean-motion resonance [MMR]), main (between 3: 2 and 2: 1 MMR), and outer (exterior to 2:1 MMR). The main classical belt (a = 40-47 AU) needs to be modeled with at least three components: the "hot" component with a wide inclination distribution and two "cold" components (stirred and kernel) with much narrower inclination distributions. The hot component must have a significantly shallower absolute magnitude (H-g) distribution than the other two components. With 95% confidence, there are 8000(-1600)(+1800) objects in the main belt with H-g <= 8.0, of which 50% are from the hot component, 40% from the stirred component, and 10% from the kernel; the hot component's fraction drops rapidly with increasing Hg. Because of this, the apparent population fractions depend on the depth and ecliptic latitude of a trans-Neptunian survey. The stirred and kernel components are limited to only a portion of the main belt, while we find that the hot component is consistent with a smooth extension throughout the inner, main, and outer regions of the classical belt; in fact, the inner and outer belts are consistent with containing only hot-component objects. The H-g <= 8.0 TNO population estimates are 400 for the inner belt and 10,000 for the outer belt to within a factor of two (95% confidence). We show how the CFEPS Survey Simulator can be used to compare a cosmogonic model for the orbital element distribution to the real Kuiper Belt.

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
November 28, 2023