Published 2018
| Version v1
Journal article
Statistical analysis and parameter selection for Mapper
Contributors
Others:
- Understanding the Shape of Data (DATASHAPE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Saclay - Ile de France ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Laboratoire de Mathématiques Jean Leray (LMJL) ; Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST) ; Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)
- European Project: 339025,EC:FP7:ERC,ERC-2013-ADG,GUDHI(2014)
Description
In this article, we study the question of the statistical convergence of the 1-dimensional Mapper to its continuous analogue, the Reeb graph. We show that the Mapper is an optimal estimator of the Reeb graph, which gives, as a byproduct, a method to automatically tune its parameters and compute confidence regions on its topological features, such as its loops and flares. This allows to circumvent the issue of testing a large grid of parameters and keeping the most stable ones in the brute-force setting, which is widely used in visualization, clustering and feature selection with the Mapper.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-01633106
- URN
- urn:oai:HAL:hal-01633106v2
Origin repository
- Origin repository
- UNICA