Published 2022
| Version v1
Journal article
On {a,b}-edge-weightings of bipartite graphs with odd a,b
- Others:
- Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Danmarks Tekniske Universitet = Technical University of Denmark (DTU)
Description
For any S⊂ℤ we say that a graph G has the S-property if there exists an S-edge-weighting w:E(G)→S such that for any pair of adjacent vertices u,v we have Σ_{e∈E(v)} w(e) ≠ Σ_{e∈E(u)} w(e), where E(v) and E(u) are the sets of edges incident to v and u respectively. This work focuses on {a,a+2}-edge-weightings where a∈ℤ is odd. We show that a 2-connected bipartite graph has the {a,a+2}-property if and only if it is not a so-called odd multi-cactus. In the case of trees, we show that only one case is pathological. That is, we show that all trees have the {a,a+2}-property for odd a≠−1, while there is an easy characterization of trees without the {−1,1}-property.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-01988399
- URN
- urn:oai:HAL:hal-01988399v2
- Origin repository
- UNICA