Fine cophasing of segmented aperture telescopes with ZELDA, a Zernike wavefront sensor in the diffraction‐limited regime
- Others:
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire d'Astrophysique de Marseille (LAM) ; Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- European Project: 683029 ,KERNEL
Description
Context. Segmented aperture telescopes require an alignment procedure with successive steps from coarse alignment to monitoring process in order to provide very high optical quality images for stringent science operations such as exoplanet imaging. The final step, referred to as fine phasing, calls for a high sensitivity wavefront sensing and control system in a diffraction‐limited regime to achieve segment alignment with nanometric accuracy. In this context, Zernike wavefront sensors represent promising options for such a calibration. A concept called the Zernike unit for segment phasing (ZEUS) was previously developed for ground‐based applications to operate under seeing‐limited images. Such a concept is, however, not suitable for fine cophasing with diffraction‐limited images.Aims. We revisit ZELDA, a Zernike sensor that was developed for the measurement of residual aberrations in exoplanet direct imagers, to measure segment piston, tip, and tilt in the diffraction‐limited regime.Methods. We introduce a novel analysis scheme of the sensor signal that relies on piston, tip, and tilt estimators for each segment, and provide probabilistic insights to predict the success of a closed‐loop correction as a function of the initial wavefront error.Results. The sensor unambiguously and simultaneously retrieves segment piston and tip‐tilt misalignment. Our scheme allows for correction of these errors in closed‐loop operation down to nearly zero residuals in a few iterations. This sensor also shows low sensitivity to misalignment of its parts and high ability for operation with a relatively bright natural guide star.Conclusions. Our cophasing sensor relies on existing mask technologies that make the concept already available for segmented apertures in future space missions.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-01678436
- URN
- urn:oai:HAL:hal-01678436v1
- Origin repository
- UNICA