Published June 2003
| Version v1
Journal article
Deadlock prevention by acyclic orientations
- Others:
- Simulation, Object Oriented Languages and Parallelism (SLOOP) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Università degli Studi di Perugia = University of Perugia (UNIPG)
- University of L'Aquila [Italy] (UNIVAQ)
Description
In this paper we consider a combinatorial problem consisting in finding an acyclic orientation of a graph which minimizes the maximum number of changes of orientations along a given set of dipaths. A change of orientation along a dipath occurs when two consecutive arcs are discordly oriented. Such maximum number of changes of orientations is called the rank of the acyclic orientation with respect to the set of dipaths and the minimum rank of all possible acyclic orientations is the rank of the graph with respect to the set of dipaths. Besides its theoretical interest, the topic has also practical applications. In fact,
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-03764730
- URN
- urn:oai:HAL:hal-03764730v1
- Origin repository
- UNICA