A Three-player Nash game for point-wise source identification in Cauchy-Stokes problems
- Creators
- Ouni, Marwa
- Habbal, Abderrahmane
- Kallel, Moez
- Others:
- Ecole Nationale d'Ingénieurs de Tunis (ENIT) ; Université de Tunis El Manar (UTM)
- Analysis and Control of Unsteady Models for Engineering Sciences (ACUMES) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Université Mohammed VI Polytechnique [Ben Guerir] (UM6P)
- PHC Utique program NAMRED of the French Ministry of Foreign Affairs
- Ministry of higher education, research and innovation and the Tunisian Ministry of higher education and scientific research in the CMCU project number 18G1502
Description
We consider linear steady Stokes flow under the action of a finite number of particles located inside the flow domain. The particles exert point-wise forces on the fluid, and are unknown in number, location and magnitude. We are interested in the determination of these point-wise forces, using only a single pair of partially available Cauchy boundary measurements. The inverse problem then couples two harsh problems : identification of point-wise sources and recovery of missing boundary data. We reformulate it as a threeplayer Nash game. The first two players aim at recovering the Dirichlet and Neumann missing data, while the third one aims at the point-forces reconstruction of the number, location and magnitude of the point-forces. To illustrate the efficiency and robustness of the proposed algorithm, we finally present several numerical experiments for different geometries and source distribution, including the case of noisy measurements.
Additional details
- URL
- https://hal.inria.fr/hal-03523088
- URN
- urn:oai:HAL:hal-03523088v1
- Origin repository
- UNICA