Backprop Diffusion is Biologically Plausible
- Creators
- Gori, Marco
- Betti, Alessandro
- Others:
- Modèles et algorithmes pour l'intelligence artificielle (MAASAI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Università degli Studi di Siena = University of Siena (UNISI)
Description
The Backpropagation algorithm relies on the abstraction of using a neural model that gets rid of the notion of time, since the input is mapped instantaneously to the output. In this paper, we claim that this abstraction of ignoring time, along with the abrupt input changes that occur when feeding the training set, are in fact the reasons why, in some papers, Backprop biological plausibility is regarded as an arguable issue. We show that as soon as a deep feedforward network operates with neurons with time-delayed response, the backprop weight update turns out to be the basic equation of a biologically plausible diffusion process based on forward-backward waves. We also show that such a process very well approximates the gradient for inputs that are not too fast with respect to the depth of the network. These remarks somewhat disclose the diffusion process behind the backprop equation and leads us to interpret the corresponding algorithm as a degeneration of a more general diffusion process that takes place also in neural networks with cyclic connections.
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-02878574
- URN
- urn:oai:HAL:hal-02878574v1
- Origin repository
- UNICA