Matrix and tensor decompositions for identification of block-structured nonlinear channels in digital transmission systems
- Creators
- Kibangou, Alain
- Favier, Gérard
- Others:
- Laboratoire d'analyse et d'architecture des systèmes (LAAS) ; Université Toulouse 1 Capitole (UT1) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université Fédérale Toulouse Midi-Pyrénées
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe SIGNAL ; Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
In this paper, we consider the problem of identification of nonlinear communication channels using input-output measurements. The nonlinear channel is structured as a LTI-ZMNL-LTI one, i.e. a zero-memory nonlinearity (ZMNL) sandwiched between two linear time-invariant (LTI) subchannels. Considering Volterra kernels of order higher than two as tensors, we show that such a kernel associated with a LTI-ZMNL-LTI admits a PARAFAC decomposition with matrix factors in Toeplitz form. From a third-order Volterra kernel, we show that the PARAFAC decomposition allows estimating directly the linear subchannels. In the case of a LTI-ZMNL channel, such a task is achieved by considering an eigenvalue decomposition of a given slice of such a tensor. Then, the nonlinear subsystem is estimated in the least squares sense. The proposed identification method is illustrated by means of simulation results.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00417585
- URN
- urn:oai:HAL:hal-00417585v1
- Origin repository
- UNICA