Published 2003 | Version v1
Conference paper

Traffic Grooming in Unidirectional WDM Ring Networks: the all-to-all unitary case

Others:
Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Applied Mathematics IV Department ; Universitat Politècnica de Catalunya [Barcelona] (UPC)
RTN ARACNE, FET CRESCCO

Description

We address the problem of traffic grooming in WDM rings with all-to-all uniform unitary traffic. We want to minimize the total number of SONET add-drop multiplexers (ADMs) required. This problem corresponds to a partition of the edges of the complete graph into subgraphs, where each subgraph has at most C edges (where C is the grooming ratio) and where the total number of vertices has to be minimized. Using tools of graph and design theory, we optimally solve the problem for practical values and infinite congruence classes of values for a given C . Among others, we give optimal constructions when C ≥ N (N − 1)/6 and results when C = 12. We also show how to improve lower bounds by using refined counting techniques, and how to use efficiently an ILP program by restricting the search space.

Abstract

International audience

Additional details

Created:
December 3, 2022
Modified:
December 1, 2023