Published December 15, 2013 | Version v1
Journal article

A circadian clock transcription model for the personalization of cancer chronotherapy.

Description

Circadian timing of anticancer medications has improved treatment tolerability and efficacy several fold, yet with intersubject variability. Using three C57BL/6-based mouse strains of both sexes, we identified three chronotoxicity classes with distinct circadian toxicity patterns of irinotecan, a topoisomerase I inhibitor active against colorectal cancer. Liver and colon circadian 24-hour expression patterns of clock genes Rev-erbα and Bmal1 best discriminated these chronotoxicity classes, among 27 transcriptional 24-hour time series, according to sparse linear discriminant analysis. An 8-hour phase advance was found both for Rev-erbα and Bmal1 mRNA expressions and for irinotecan chronotoxicity in clock-altered Per2(m/m) mice. The application of a maximum-a-posteriori Bayesian inference method identified a linear model based on Rev-erbα and Bmal1 circadian expressions that accurately predicted for optimal irinotecan timing. The assessment of the Rev-erbα and Bmal1 regulatory transcription loop in the molecular clock could critically improve the tolerability of chemotherapy through a mathematical model-based determination of host-specific optimal timing.

Abstract

International audience

Additional details

Identifiers

URL
https://hal.archives-ouvertes.fr/hal-00968694
URN
urn:oai:HAL:hal-00968694v1

Origin repository

Origin repository
UNICA