Published June 3, 2020 | Version v1
Publication

Gain in stochastic resonance: Precise numerics versus linear response theory beyond the two-mode approximation

Description

In the context of the phenomenon of stochastic resonance (SR), we study the correlation function, the signal-to-noise ratio (SNR), and the ratio of output over input SNR, i.e., the gain, which is associated to the nonlinear response of a bistable system driven by time-periodic forces and white Gaussian noise. These quantifiers for SR are evaluated using the techniques of linear response theory (LRT) beyond the usually employed two-mode approximation scheme. We analytically demonstrate within such an extended LRT description that the gain can indeed not exceed unity. We implement an efficient algorithm, based on work by Greenside and Helfand (detailed in the Appendix), to integrate the driven Langevin equation over a wide range of parameter values. The predictions of LRT are carefully tested against the results obtained from numerical solutions of the corresponding Langevin equation over a wide range of parameter values. We further present an accurate procedure to evaluate the distinct contributions of the coherent and incoherent parts of the correlation function to the SNR and the gain. As a main result we show for subthreshold driving that both the correlation function and the SNR can deviate substantially from the predictions of LRT and yet the gain can be either larger or smaller than unity. In particular, we find that the gain can exceed unity in the strongly nonlinear regime which is characterized by weak noise and very slow multifrequency subthreshold input signals with a small duty cycle. This latter result is in agreement with recent analog simulation results by Gingl et al. [ICNF 2001, edited by G. Bosman (World Scientific, Singapore, 2002), pp. 545–548; Fluct. Noise Lett. 1, L181 (2001)].

Abstract

España, Dirección General de Enseñanza Superior Grant No. BFM2002-03822

Additional details

Created:
March 27, 2023
Modified:
November 28, 2023