Published September 6, 2019 | Version v1
Publication

Influence of a Novel Surface of Bioactive Implants on Osseointegration: A Comparative and Histomorfometric Correlation and Implant Stability Study in Minipigs

Description

Purpose: The objective of this study was to assess the influence of a novel surface of dental implants (ContacTi®) on the osseointegration process in a minipig model. The surface was compared with other existing surfaces on the market (SLA® and SLActive®) by employing bone implant contact analysis (BIC) and implant stability. Method: Twelve minipigs were used with prior authorisation from an ethics committee. Three types of surfaces were tested: SLA® (sand-blasted acid-etched titanium), SLActive® (same but hydrophilic, performed under a nitrogen atmosphere), and ContacTi® (alumina particle bombardment of titanium, bioactivated when treated thermochemically) in 4.1 mm × 8 mm implants with internal connection and a polished neck. Twelve implants of each surface type (N = 36) were placed, sacrificing 1/3 of the animals at 2 weeks of placement, 1/3 at 4 weeks and the remaining 1/3 at 8 weeks. Numerical variables were compared with Analysis of Variance, and the correlation between ISQ and BIC was established with the Spearman's rank correlation coefficient. Results: SLActive® and ContacTi® surfaces showed elevated osteoconductivity at 4 weeks, maintaining a similar evolution at 8 weeks (large amount of mature lamellar tissue with high maturity and bone quality). The SLA® surface showed slower maturation. The ISQ values in surgery were elevated (above 65), higher at necropsy and higher at 4 and 8 weeks in the SLA® group than in the other two (SLActive® and ContacTi®). No significant correlation was found between ISQ and BIC for each implant surface and necropsy time. Conclusion: The three surfaces analysed showed high RFA and BIC values, which were more favourable for the SLActive® and ContacTi® surfaces. No statistical correlation was found between the RFA and BIC values in any of the three surfaces analysed.

Abstract

Research Foundation of the University of Seville Project Code 1871

Additional details

Created:
March 27, 2023
Modified:
November 29, 2023