Seismo-acoustic wave propagation in the Rade of Hyères (France) generated by counter-mining of explosive devices : risk assessment from the comparison between numerical simulations and real experiments
- Others:
- Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ) ; Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
- Shenzhen University [Shenzhen]
- Service Hydrographique et Océanographique de la Marine (SHOM) ; Ministère de la Défense
- Géoazur (GEOAZUR 7329) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])
- Centre d'études et d'expertise sur les risques, l'environnement, la mobilité et l'aménagement - Equipe-projet Repsody (Equipe-projet Repsody) ; Centre d'Etudes et d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement (Cerema)
- Auteur indépendant
- Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG) ; Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST) ; Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Observatoire des Sciences de l'Univers Nantes Atlantiques (OSUNA) ; Université d'Angers (UA)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Conservatoire National des Arts et Métiers [CNAM] (CNAM) ; HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique) ; Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université Gustave Eiffel
- Ondes et Imagerie (O&I) ; Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ) ; Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
Description
Explosive devices from World War II are discovered almost every week on the French coasts and they must be destroyed by the French Navy Mine Warfare Office. The consequences of the counter-mining on the marine environment are complex to evaluate. Depending on the environment geology, the explosive charges and their localization, the seismo-acoustic waves generated by the explosion may cause damage to infrastructures located on the coast, and under specific conditions small submarine landslides. The ANR ASTRID POSA project proposed to address the risk assessment issue on the Mediterranean coast. The main originality of this project lied in the approach used that combines geological measurements, acoustic data recorded within the sea coastal zone and seismic data recorded on the coast, together with numerical simulations of seismo-acoustic wave propagation. We propose here to present the results of such a methodology applied to the counter-mining campaign that occurred in the Rade of Hyères (France) in December 2018. We focus more specifically on the numerical simulations of seismo-acoustic wave propagation from the location of the device explosion to several seismometers deployed on the coast of Hyères. From topographical and sedimentary measurements performed in the Rade of Hyères, physical and geometrical characteristics of the marine seabed have been carefully selected as input data for numerical simulations. In addition, a particular attention has been paid to the measured characteristics of the device explosion (source). The numerical simulations have then been conducted using a spectral-element method. The impact of the explosive device charge and its location (on the seabed or in the water column), together with the impact of the marine environment properties, on the simulated signals have been studied. Finally, the numerical results have been compared with the real signals recorded by the seismometers. The risks of land degradation have been evaluated afterwards.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-03240224
- URN
- urn:oai:HAL:hal-03240224v1
- Origin repository
- UNICA