Estimation of Gaussian graphs by model selection
- Creators
- Giraud, Christophe
- Others:
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- INRA - Mathématiques et Informatique Appliquées (Unité MIAJ) ; Institut National de la Recherche Agronomique (INRA)
Description
We investigate in this paper the estimation of Gaussian graphs by model selection from a non-asymptotic point of view. We start from a n-sample of a Gaussian law P_C in R^p and focus on the disadvantageous case where n is smaller than p. To estimate the graph of conditional dependences of P_C , we introduce a collection of candidate graphs and then select one of them by minimizing a penalized empirical risk. Our main result assess the performance of the procedure in a non-asymptotic setting. We pay a special attention to the maximal degree D of the graphs that we can handle, which turns to be roughly n/(2 log p).
Abstract
Published in at http://dx.doi.org/10.1214/08-EJS228 the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of Mathematical Statistics (http://www.imstat.org)
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00178275
- URN
- urn:oai:HAL:hal-00178275v3
- Origin repository
- UNICA