Full Waveform Inversion and the truncated Newton method
- Others:
- Equations aux Dérivées Partielles (EDP) ; Laboratoire Jean Kuntzmann (LJK) ; Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)
- Institut des Sciences de la Terre (ISTerre) ; Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-PRES Université de Grenoble-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)
- Géoazur (GEOAZUR 6526) ; Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
Description
Full Waveform Inversion (FWI) is a powerful method for reconstructing subsurface parameters from local measurements of the seismic wavefield. This method consists in minimizing a distance between predicted and recorded data. The predicted data is computed as the solution of a wave propagation problem. Conventional numerical methods for the resolution of FWI problems are gradient-based methods, such as the preconditioned steepest-descent, or more recently the l-BFGS quasi-Newton algorithm. In this study, we investigate the interest of applying a truncated Newton method to FWI. The inverse Hessian operator plays a crucial role in the parameter reconstruction. The truncated Newton method allows one to better account for this operator. This method is based on the computation of the Newton descent direction by solving the corresponding linear system through an iterative procedure such as the conjugate gradient method. The large-scale nature of FWI problems requires however to carefully implement this method to avoid prohibitive computational costs. First, this requires to work in a matrix-free formalism, and the capability of computing efficiently Hessian-vector products. To this purpose, we propose general second-order adjoint state formulas. Second, special attention must be payed to define the stopping criterion for the inner linear iterations associated with the computation of the Newton descent direction. We propose several possibilities and establish a theoretical link between the Steihaug-Toint method, based on trust-regions, and the Eisenstat stopping criterion, designed for method globalized by linesearch. We investigate the application of the truncated Newton method to two test cases: the first is a standard test case in seismic imaging based on the Marmousi II model. The second one is inspired by a near-surface imaging problem for the reconstruction of high velocity structures. In the latter case, we demonstrate that the presence of large amplitude multi-scattered waves prevents standard methods from converging while the truncated Newton method provides more reliable results.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00763702
- URN
- urn:oai:HAL:hal-00763702v1
- Origin repository
- UNICA