Published July 20, 2020
| Version v1
Conference paper
Data Augmentation for Automatic Identification of Spatiotemporal Dispersion Electrograms in Persistent Atrial Fibrillation Ablation Using Machine Learning
Contributors
Others:
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe SIGNAL ; Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Federal Institute of Education, Science and Technology of Espírito Santo (IFES)
- Centre Hospitalier Universitaire de Nice (CHU Nice)
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe MODALIS ; Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- IDEX-UNIV-COTEDAZUR
- IEEE
- IDEX-UNIV-COTEDAZUR
- ANR-15-IDEX-0001,UCA JEDI,Idex UCA JEDI(2015)
Description
Catheter ablation is increasingly used to treat atrial fibrillation (AF), the most common sustained cardiac arrhythmia encountered in clinical practice. A recent breakthrough finding in AF ablation consists in identifying ablation sites based on their spatiotemporal dispersion (STD). STD stands for a delay of the cardiac activation observed in intracardiac electrograms (EGMs) across contiguous leads. In practice, interventional cardiologists localize STD sites visually using the PentaRay multipolar mapping catheter. This work aims at automatically characterizing STD by classifying EGM data into STD vs. non STD groups using machine learning (ML) techniques. A dataset of 23082 multichannel EGM recordings acquired by the PentaRay coming from 16 persistent AF patients is included in this study. A major problem hampering the classification performance lies in the highly imbalanced dataset ratio. We suggest to tackle data imbalance using adapted data augmentation techniques including 1) undersampling 2) oversampling 3) lead shift 4) time reversing and 5) time shift. These tools are designed to preserve the integrity of the cardiac data and are validated by a partner cardiologist. They provide enhancement in classification performance in terms of sensitivity, which increases from 50% to 80% while maintaining accuracy and AUC around 90% with oversampling. Bootstrapping is applied to check the variability of the trained classifiers. Clinical relevance The machine learning techniques developed in this contribution are expected to aid cardiologists in performing patient-tailored catheter ablation procedures for treating persistent AF.
Abstract
Selected as Europe geographic finalist at the student paper competitionAbstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-02871770
- URN
- urn:oai:HAL:hal-02871770v1
Origin repository
- Origin repository
- UNICA