Air quality and temperature effects on exercise-induced bronchoconstriction
- Others:
- Medical Affairs, Pharmaxis, Exton, Pennsylvania, USA
- Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- Department of Thoracic Medicine, St Olavs Hospital, University Hospital of Trondheim, Trondheim, Norway
- Laboratoire Motricité Humaine Expertise Sport Santé (LAMHESS) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université de Toulon (UTLN)-Université Côte d'Azur (UCA)
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ) ; Université Laval [Québec] (ULaval)
Description
Exercise-induced bronchoconstriction (EIB) is exaggerated constriction of the airways usually soon after cessation of exercise. This is most often a response to airway dehydration in the presence of airway inflammation in a person with a responsive bronchial smooth muscle. Severity is related to water content of inspired air and level of ventilation achieved and sustained. Repetitive hyperpnea of dry air during training is associated with airway inflammatory changes and remodeling. A response during exercise that is related to pollution or allergen is considered EIB. Ozone and particulate matter are the most widespread pollutants of concern for the exercising population; chronic exposure can lead to new-onset asthma and EIB. Freshly generated emissions particulate matter less than 100 nm is most harmful. Evidence for acute and long-term effects from exercise while inhaling high levels of ozone and/or particulate matter exists. Much evidence supports a relationship between development of airway disorders and exercise in the chlorinated pool. Swimmers typically do not respond in the pool; however, a large percentage responds to a dry air exercise challenge. Studies support oxidative stress mediated pathology for pollutants and a more severe acute response occurs in the asthmatic. Winter sport athletes and swimmers have a higher prevalence of EIB, asthma and airway remodeling than other athletes and the general population. Because of fossil fuel powered ice resurfacers in ice rinks, ice rink athletes have shown high rates of EIB and asthma. For the athlete training in the urban environment, training during low traffic hours and in low traffic areas is suggested.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-03028619
- URN
- urn:oai:HAL:hal-03028619v1
- Origin repository
- UNICA