Gaussian regression and power spectral density estimation with missing data: The MICROSCOPE space mission as a case study,
- Others:
- ONERA - The French Aerospace Lab [Châtillon] ; ONERA-Université Paris Saclay (COmUE)
- Géoazur (GEOAZUR 6526) ; Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
Description
We present a Gaussian regression method for time series with missing data and stationary residuals of unknown power spectral density (PSD). The missing data are efficiently estimated by their conditional expectation as in universal Kriging based on the circulant approximation of the complete data covariance. After initialization with an autoregressive fit of the noise, a few iterations of estimation/reconstruction steps are performed until convergence of the regression and PSD estimates, in a way similar to the expectation-conditional-maximization algorithm. The estimation can be performed for an arbitrary PSD provided that it is sufficiently smooth. The algorithm is developed in the framework of the MICROSCOPE space mission whose goal is to test the weak equivalence principle (WEP) with a precision of 10−15. We show by numerical simulations that the developed method allows us to meet three major requirements: to maintain the targeted precision of the WEP test in spite of the loss of data, to calculate a reliable estimate of this precision and of the noise level, and finally to provide consistent and faithful reconstructed data to the scientific community.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01346493
- URN
- urn:oai:HAL:hal-01346493v1
- Origin repository
- UNICA