Real-time digital signal processing based on FPGAs for electronic skin implementation
Description
Enabling touch-sensing capability would help appliances understand interaction behaviors with their surroundings. Many recent studies are focusing on the development of electronic skin because of its necessity in various application domains, namely autonomous artificial intelligence (e.g., robots), biomedical instrumentation, and replacement prosthetic devices. An essential task of the electronic skin system is to locally process the tactile data and send structured information either to mimic human skin or to respond to the application demands. The electronic skin must be fabricated together with an embedded electronic system which has the role of acquiring the tactile data, processing, and extracting structured information. On the other hand, processing tactile data requires efficient methods to extract meaningful information from raw sensor data. Machine learning represents an effective method for data analysis in many domains: it has recently demonstrated its effectiveness in processing tactile sensor data. In this framework, this paper presents the implementation of digital signal processing based on FPGAs for tactile data processing. It provides the implementation of a tensorial kernel function for a machine learning approach. Implementation results are assessed by highlighting the FPGA resource utilization and power consumption. Results demonstrate the feasibility of the proposed implementation when real-time classification of input touch modalities are targeted.
Additional details
- URL
- http://hdl.handle.net/11567/891790
- URN
- urn:oai:iris.unige.it:11567/891790
- Origin repository
- UNIGE