Metal-Metal Interactions in Trinuclear Copper(II) Complexes [Cu3(RCOO)4(H2TEA)2] and Binuclear [Cu2(RCOO)2(H2TEA)2]. Syntheses and Combined Structural, Magnetic, High-Field Electron Paramagnetic Resonance, and Theoretical Studies
Description
The trinuclear [Cu3(RCOO)4(H2TEA)2] copper(II) complexes, where RCOO- = 2-furoate (1), 2-methoxybenzoate (2), and 3-methoxybenzoate (3, 4), as well as dimeric species [Cu2(H2TEA)2(RCOO)2]·2H2O, have been prepared by adding triethanolamine (H3TEA) at ambient conditions to hydrated Cu(RCOO)2 salts. The newly synthesized complexes have been characterized by elemental analyses, spectroscopic techniques (IR and UV-visible), magnetic susceptibility, single crystal X-ray structure determination and theoretical calculations, using a Difference Dedicated Configuration Interaction approach for the evaluation of magnetic coupling constants. In 1 and 2, the central copper atom lies on an inversion center, while in the polymorpimeric crom high-field, high-frequency electron paramagnetic resonance spectra at temperatures ranging from 3 to 290 K and were used for the interpretation of the magnetic data. It was found that the dominant interaction between the terminal and central Cu sites J12 is ferromagnetic in nature in all complexes, even though differences have been found between the symmetrical or quasi-symmetrical complexes 1-3 and non-symmetrical complex 4, while the interaction between the terminal centers, J23, is negligible.
Abstract
U.S. National Science Foundation DMR-1157490
Additional details
- URL
- https://idus.us.es/handle//11441/134167
- URN
- urn:oai:idus.us.es:11441/134167
- Origin repository
- USE