Published November 18, 2016
| Version v1
Conference paper
A formal approach to the mapping of tasks on an heterogenous multicore, energy-aware architecture
Creators
Contributors
Others:
- Models and methods of analysis and optimization for systems with real-time and embedding constraints (AOSTE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Inria de Paris ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Laboratoire d'Electronique, Antennes et Télécommunications (LEAT) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
The search for optimal mapping of application (tasks) onto processor architecture (resources) is always an acute issue, as new types of heterogeneous multicore architectures are being proposed constantly. The physical allocation and temporal scheduling can be attempted at a number of levels, from abstract mathematical models and operational research solvers, to practical simulation and run-time emulation. This work belongs to the first category. As often in the embedded domain we take as optimality metrics a combination of power consumption (to be minimized) and performance (to be maintained). One specificity is that we consider a dedicated architecture, namely the big.LITTLE ARM-based platform style that is found in recent Android smartphones. So now tasks can be executed either on fast, energy-costly cores, or slower energy-sober ones. The problem is even more complex since each processor may switch its running frequency, which is a natural trade-off between performance and power consumption. We consider also energy bonus when a full block (big or LITTLE) can be powered down. This dictates in the end a specific set of requirements and constraints, expressed with equations and inequations of a certain size, which must be fed to an appropriate solver (SMT solver in our case). Our original aim was (and still is) to consider whether these techniques would scale up in this case. We conducted experiments on several examples, and we describe more thoroughly a task graph application based on the tiled Cholesky decomposition algorithm, for its relevant size complexity. We comment on our findings and the modeling issues involved.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.inria.fr/hal-01412790
- URN
- urn:oai:HAL:hal-01412790v1
Origin repository
- Origin repository
- UNICA