Published August 27, 2024
| Version v1
Conference paper
A 4D QUANTIFICATION PIPELINE TO CHARACTERIZE PLANT CELL WALL ENZYMATIC HYDROLYSIS IN HIGHLY DECONSTRUCTED SAMPLES
Contributors
Others:
- Fractionnement des AgroRessources et Environnement (FARE) ; Université de Reims Champagne-Ardenne (URCA)-Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE)
- Morphologie et Images (MORPHEME) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut de Biologie Valrose (IBV) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Centre National de la Recherche Scientifique (CNRS)
- ANR-19-CE43-0010,BIOMOD,Analyse Multiéchelle et Modélisation Spatio-temporelle de la Déconstruction de la Biomasse Lignocellulosique(2019)
Description
Converting plant cell walls, as a renewable source of energy and materials, into bioproducts is an important step toward reducing dependence on fossil fuels. The primary obstacle in this conversion is overcoming the cell wall's inherent resistance to enzymatic breakdown called recalcitrance. Much of the research during past decades has concentrated on pinpointing markers of recalcitrance at the nanoscale. As a result, the enzymatic deconstruction of plant cell walls at the cell and tissue scales has been insufficiently studied. Our previous results have paved the way to fill this gap by connecting key parameters of poplar wood enzymatic deconstruction across nano and micro scales [1]. Building upon this work and to further investigate the recalcitrance across scales, we developed a protocol to acquire time-lapse images of spruce tree wood during enzymatic hydrolysis using fluorescence confocal imaging which generated images with highly deconstructed and deformed cell walls. Thus, it was necessary to develop a computational pipeline specifically designed to process this kind of images. The pipeline first segments the pre-hydrolysis image which can exhibit a tilt by applying spatial constraints on the watershed algorithm. The pipeline then employs an adapted spatial information propagation strategy to segment images of highly deconstructed samples by dividing the time-lapse images into sequential clusters where the final image of a cluster is also the first image of the subsequent cluster. Transformations are then computed within each cluster by registering the initial image of the cluster with the successive images within that cluster. Starting from the first cluster with the pre-hydrolysis image, these temporarily constrained transformations are then applied to the segmentation of the initial image of the cluster generating segmentations of the subsequent images. Overall, by limiting the registration to individual clusters, this approach successfully processes images of highly deconstructed samples. The quantification of cell and tissue scale morphological features using these segmentations sheds light on the underlying parameters of the enzymatic deconstruction. The pipeline also provides dynamics of cell wall autofluorescence intensity values to develop mathematical models of cell wall deconstruction.Réferences[1] Refahi, Y., Zoghlami, A., Vine, T., Terryn, C., & Paës, G. (2024). Plant Cell Wall Enzymatic Deconstruction: Bridging the Gap Between Micro and Nano Scales. bioRxiv, 2024-01.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-04731379
- URN
- urn:oai:HAL:hal-04731379v1
Origin repository
- Origin repository
- UNICA