Subshift attractors of cellular automata
- Creators
- Formenti, Enrico
- Kurka, Petr
- Others:
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe MC3 ; Modèles Discrets pour les Systèmes Complexes (Laboratoire I3S - MDSC) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Centre for Theoretical Studies, Charles University, Czechia (CTS) ; Charles University [Prague] (CU)-Czech Academy of Sciences [Prague] (CAS)
- P. Kurka a réçu un financement des RI de l'Université de Nice-Sophia Antipolis
- ANR-05-BLAN-0374,Sycomore,Systèmes complexes et modèles de calcul(2005)
Description
A subshift attractor is a two-sided subshift which is an attractor of a cellular automaton. We prove that each subshift attractor is chain-mixing, contains a configuration which is both F-periodic and $\sigma$-periodic and the complement of its language is recursively enumerable. We prove that a subshift of finite type is an attractor of a cellular automaton iff it is mixing. We identify a class of chain-mixing sofic subshifts which are not subshift attractors. We construct a cellular automaton whose maximal attractor is a non-sofic mixing subshift, answering a question raised in Maass. We show that a cellular automaton is surjective on its small quasi-attractor which is the non-empty intersection of all subshift attractors of all $F^q\sigma^p$, where $q>0$ and $p\in Z$.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00311968
- URN
- urn:oai:HAL:hal-00311968v1
- Origin repository
- UNICA