How long does it take for all users in a social network to choose their communities?
- Others:
- Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Columbia University [New York]
- Research Institute of the University of Bucharest (ICUB) ; University of Bucharest (UniBuc)
- Algorithms, Biology, Structure (ABS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Description
We consider a community formation problem in social networks, where the users are either friends or enemies. The users are partitioned into conflict-free groups (i.e., independent sets in the conflict graph $G^- =(V,E)$ that represents the enmities between users). The dynamics goes on as long as there exists any set of at most k users, k being any fixed parameter, that can change their current groups in the partition simultaneously, in such a way that they all strictly increase their utilities (number of friends i.e., the cardinality of their respective groups minus one).Previously, the best-known upper-bounds on the maximum time of convergence were $O(|V|\alpha(G^-))$ for k $\leq 2$ and $O(|V|^3) for k=3$, with $\alpha(G^-)$ being the independence number of $G^-$. Our first contribution in this paper consists in reinterpreting the initial problem as the study of a dominance ordering over the vectors of integer partitions. With this approach, we obtain for $k \leq 2$ the tight upper-bound $O(|V| \min\{ \alpha(G^-)$, $\sqrt{|V|} \})$ and, when $G^-$ is the empty graph, the exact value of order $\frac{(2|V|)^{3/2}}{3}$.The time of convergence, for any fixed k \geq 4, was conjectured to be polynomial. In this paper we disprove this. Specifically, we prove that for any k \geq 4, the maximum time of convergence is an $\Omega(|V|^{\Theta(\log{|V|})})$.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-01780627
- URN
- urn:oai:HAL:hal-01780627v1
- Origin repository
- UNICA