Improved RJMCMC point process sampler for object detection on images by simulated annealing
- Others:
- Inverse problems in earth monitoring (ARIANA) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- INRIA
Description
We first recall Geyer and Møller algorithm that allows to sample point processes using a Markov chain. We also recall Green's framework that allows to build samplers on general state spaces by imposing reversibility of the designed Markov chain.Since in our image processing applications, we are interested by sampling highly spatially correlated and non-invariant point processes, we adapt these ideas to improve the exploration ability of the algorithm. In particular, we keep the ability of generating points with non-uniform distributions, and design an updating scheme that allows to generate points in some neighborhood of other points. We first design updating schemes under Green's framework to keep (.) reversibility of the Markov chain and then show that stability properties are not loosed. Using a drift condition we prove that the Markov chain is geometrically ergodic and Harris recurrent.We finally show on experimental results that these kinds of updates are usefull and propose other improvements.
Additional details
- URL
- https://hal.inria.fr/inria-00071683
- URN
- urn:oai:HAL:inria-00071683v1
- Origin repository
- UNICA