Published December 25, 2024
| Version v1
Journal article
Mechanistic Learning for Predicting Survival Outcomes in Head and Neck Squamous Cell Carcinoma
Contributors
Others:
- Méthodes computationnelles pour la prise en charge thérapeutique en oncologie : Optimisation des stratégies par modélisation mécaniste et statistique (COMPO) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Cancérologie de Marseille (CRCM) ; Aix Marseille Université (AMU)-Institut Paoli-Calmettes (IPC) ; Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Institut Paoli-Calmettes (IPC) ; Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Service de biostatistique et d'épidémiologie (SBE) ; Direction de la recherche clinique [Gustave Roussy] ; Institut Gustave Roussy (IGR)-Institut Gustave Roussy (IGR)
- Centre de Lutte contre le Cancer Antoine Lacassagne [Nice] (UNICANCER/CAL) ; UNICANCER-Université Côte d'Azur (UniCA)
- Hôpital de la Timone [CHU - APHM] (TIMONE)
- This work is part of the QUANTIC project funded by ITMO Cancer AVIESAN and the French Institute National du Cancer (grant #19CM148-00)
- This work is also part of the DIGPHAT project which was supported by a grant by a grant from the French government, managed by the National Research Agency (ANR), under the France 2030 program, reference ANR-22-PESN-0017.
- QUANTIC
- DIGPHAT
Description
ABSTRACT We employed a mechanistic learning approach, integrating on‐treatment tumor kinetics (TK) modeling with various machine learning (ML) models to address the challenge of predicting post‐progression survival (PPS)—the duration from the time of documented disease progression to death—and overall survival (OS) in Head and Neck Squamous Cell Carcinoma (HNSCC). We compared the predictive power of model‐derived TK parameters versus RECIST and assessed the efficacy of nine TK‐OS ML models against conventional survival models. Data from 526 advanced HNSCC patients treated with chemotherapy and cetuximab in the TPExtreme trial were analyzed using a double‐exponential model. TK parameters from the first line and maintenance (TKL1) or after four cycles (TK4) were used to predict PPS and post‐cycle 4 OS (OS4), combined with 12 baseline parameters. While ML algorithms underperformed compared to the Cox model for PPS, a random survival forest was superior for OS prediction using TK4 and surpassed RECIST‐based metrics. This model demonstrated unbiased OS4 prediction, suggesting its potential for improving HNSCC treatment evaluation. Trial Registration: ClinicalTrials.gov identifier: NCT02268695.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://inria.hal.science/hal-04558029
- URN
- urn:oai:HAL:hal-04558029v2
Origin repository
- Origin repository
- UNICA