Published 2012
| Version v1
Journal article
A partial stratification of secant varieties of Veronese varieties via curvilinear subschemes
Creators
Contributors
Others:
- University of Trento [Trento]
- Geometry, algebra, algorithms (GALAAD) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- European Project: 252367,EC:FP7:PEOPLE,FP7-PEOPLE-2009-IEF,DECONSTRUCT(2010)
Description
We give a partial ''~quasi-stratification~'' of the secant varieties of the order $d$ Veronese variety $X_{m,d}$ of $\mathbb {P}^m$. It covers the set $\sigma _t(X_{m,d})^{\dagger}$ of all points lying on the linear span of curvilinear subschemes of $X_{m,d}$, but two ''~quasi-strata~'' may overlap. For low border rank two different ''~quasi-strata~'' are disjoint and we compute the symmetric rank of their elements. Our tool is the Hilbert schemes of curvilinear subschemes of Veronese varieties. To get a stratification we attach to each $P\in \sigma _t(X_{m,d})^{\dagger}$ the minimal label of a quasi-stratum containing it.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.inria.fr/inria-00610522
- URN
- urn:oai:HAL:inria-00610522v2
Origin repository
- Origin repository
- UNICA