Published June 2019 | Version v1
Journal article

Combining Voxel and Normal Predictions for Multi-View 3D Sketching

Others:
GRAPHics and DEsign with hEterogeneous COntent (GRAPHDECO) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Geometry Processing and Constrained Optimization (M2DisCo) ; Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS) ; Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL) ; Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL) ; Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Mathématiques (LAMA) ; Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)
ANR-15-CE40-0006,CoMeDiC,Métriques convergentes pour le calcul digital(2015)
European Project: 714221,H2020 Pilier ERC,ERC-2016-STG-714221,D3(2017)

Description

Recent works on data-driven sketch-based modeling use either voxel grids or normal/depth maps as geometric representations compatible with convolutional neural networks. While voxel grids can represent complete objects-including parts not visible in the sketches-their memory consumption restricts them to low-resolution predictions. In contrast, a single normal or depth map can capture fine details, but multiple maps from different viewpoints need to be predicted and fused to produce a closed surface. We propose to combine these two representations to address their respective shortcomings in the context of a multi-view sketch-based modeling system. Our method predicts a voxel grid common to all the input sketches, along with one normal map per sketch. We then use the voxel grid as a support for normal map fusion by optimizing its extracted surface such that it is consistent with the re-projected normals, while being as piecewise-smooth as possible overall. We compare our method with a recent voxel prediction system, demonstrating improved recovery of sharp features over a variety of man-made objects.

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
November 30, 2023