Change Detection and Model Update Framework for Accurate Long-Term Localization
- Others:
- Intelligence artificielle et algorithmes efficaces pour la robotique autonome (ACENTAURI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)
- Université Côte d'Azur (UniCA)
- Modélisation, Information et Systèmes - UR UPJV 4290 (MIS) ; Université de Picardie Jules Verne (UPJV)
- ANR-21-CE33-0014,SAMURAI,Cartographie partageable à l'aide de capteurs hétérogènes pour la robotique collaborative(2021)
Description
The ability to perform long-term robotic operations in dynamic environments remains a challenge in fields such as surveillance, agriculture and autonomous vehicles. For improved localization and monitoring over time, this paper proposes a novel model update framework using image-based 3D change localization and segmentation. Specifically, shallow image data is used to detect and locate significant geometric change areas in a pre-made 3D model. The main contribution of this paper is the ability to precisely segment and locate both new and missing objects from few observations, and to provide consistent model updates. The applied method for geometric change detection is robust to seasonal, viewpoint, and illumination differences that may occur between operations. Qualitative and quantitative tests with both our own and publicly available datasets show that the model update framework improves on previous methods and facilitates long-term localization.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-04733246
- URN
- urn:oai:HAL:hal-04733246v1
- Origin repository
- UNICA