Published July 9, 2023
| Version v1
Conference paper
Black-box language model explanation by context length probing
Creators
Contributors
Others:
- Scientific Data Management (ZENITH) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM) ; Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
- Anna Rogers
- Jordan Boyd-Graber
- Naoaki Okazaki
- ANR-10-LABX-0020,NUMEV,Digital and Hardware Solutions and Modeling for the Environement and Life Sciences(2010)
- ANR-16-IDEX-0006,MUSE,MUSE(2016)
Description
The increasingly widespread adoption of large language models has highlighted the need for improving their explainability. We present context length probing, a novel explanation technique for causal language models, based on tracking the predictions of a model as a function of the length of available context, and allowing to assign differential importance scores to different contexts. The technique is model-agnostic and does not rely on access to model internals beyond computing token-level probabilities. We apply context length probing to large pre-trained language models and offer some initial analyses and insights, including the potential for studying long-range dependencies. The source code and a demo of the method are available.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.umontpellier.fr/hal-03917930
- URN
- urn:oai:HAL:hal-03917930v1
Origin repository
- Origin repository
- UNICA