Published January 2022
| Version v1
Journal article
Contemporary formation of early Solar System planetesimals at two distinct radial locations
Contributors
Others:
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Division of Geological and Planetary Sciences [Pasadena] ; California Institute of Technology (CALTECH)
- Institut de Physique du Globe de Paris (IPGP) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Bayerisches Geoinstitut (BGI) ; Universität Bayreuth
- Institut für Planetologie [Münster] ; Westfälische Wilhelms-Universität Münster = University of Münster (WWU)
- Max Planck Institute for Solar System Research (MPS) ; Max-Planck-Gesellschaft
- Support from program ANR-20-CE49-0006 (ANR DISKBUILD). The work presented here has been performed in preparation of the proposal HolyEarth by A.M. and T.K., which has been funded by the ERC (grant N. 101019380).
- ANR-20-CE49-0006,DISKBUILD,Processus de formation planétaire pendant l'assemblage de la nébuleuse solaire(2020)
Description
The formation of planetesimals is expected to occur via particle-gas instabilities that concentrate dust into self-gravitating clumps. Triggering these instabilities requires the prior pile-up of dust in the protoplanetary disk. This has been successfully modelled exclusively at the disk's snowline, whereas rocky planetesimals in the inner disk were only obtained by assuming either unrealistically large particle sizes or an enhanced global disk metallicity. However, planetesimal formation solely at the snowline is difficult to reconcile with the early and contemporaneous formation of iron meteorite parent bodies with distinct oxidation states and isotopic compositions, indicating formation at different radial locations in the disk. Here, by modelling the evolution of a disk with ongoing accretion of material from the collapsing molecular cloud, we show that planetesimal formation may have been triggered within the first 0.5 million years by dust pile-up at both the snowline (at ~5 au) and the silicate sublimation line (at ~1 au), provided turbulent diffusion was low. Particle concentration at ~1 au is due to the early outward radial motion of gas and is assisted by the sublimation and recondensation of silicates. Our results indicate that, although the planetesimals at the two locations formed about contemporaneously, those at the snowline accreted a large fraction of their mass (~60%) from materials delivered to the disk in the first few tens of thousands of years, whereas this fraction is only 30% for the planetesimals formed at the silicate line. Thus, provided that the isotopic composition of the delivered material changed with time, these two planetesimal populations should have distinct isotopic compositions, consistent with observations.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-03553375
- URN
- urn:oai:HAL:hal-03553375v1
Origin repository
- Origin repository
- UNICA